Biosynthesis of the Antiturnour Catharanthus Alkaloids: The Fate of the 2l'a-Hydrogen of Anhydrovinblastine

Robert L. Baxter,* Mashooda Hasan, Neil E. Mackenzie, and A. Ian Scott* *Department of Chemistry,' University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ*

 $[21′\alpha-³H, methyl-14C]$ Anhydrovinblastine is incorporated into vinblastine by cell-free preparations of *Catharanthus roseus* without loss of 3H.

The chemotherapeutic importance of the bis-indole dimeric alkaloids, vinblastine **(1)** and vincristine **(2)**, from *C. roseus* has given impetus to both synthetic^{1,2} and biosynthetic³⁻⁸ studies of these and the related alkaloids, leurosidine **(3)** and leurosine (4). Incorporation experiments with whole plants^{3,4} and cell-free systems^{6b} have established the role of vindoline **(8)** and catharanthine **(10)** as precursors of the *Aspidusperma* and *Iboga* segments of the dimers, respectively. Anhydrovin-

blastine *(5),* radiolabelled in either, but not both, of the *Aspidosperma* or *Iboga* derived segments, has been shown to be incorporated into (1) by cell-free preparations.^{5,6a} In addition, singly-labelled 20'-deoxyleurosidine **(6)** has been incorporated into **(1)** by intact C. *roseus* plant^.^

While these results suggest a biosynthetic route $(8) + (10) \rightarrow$ $(5) \rightarrow (6) \rightarrow (1)$ [path (a) in Scheme 1] similar to that previously proposed by Potier² on the basis of synthetic analogy,

Table 1. Incorporation of anhydrovinblastine (5) into vinblastine (1) by cell-free extracts³ of *C. roseus.*

Expt	Precursor	Anhydrovinblastine fed (d.p.m.)		³ H/ ¹⁴ C ratio	(1) isolated $(d.p.m.)e$		$\rm{^{3}H/^{14}C}$ ratio	$\%$ incorp. ^{\mathbf{r}}
		зH	14 ^C		зы			
зp	$[21'\alpha$ - ³ H, methyl- ¹⁴ C $(5)^c$ $[21'\alpha$ - ³ H, methyl- ¹⁴ Cl(5) ^e $[21'\alpha$ - ³ H $]$ ^d (5)	5.03×10^{6} 4.70×10^{6} 8.24 \times 10 ⁷	7.37×10^{5} 5.70 \times 10 ⁵ $\overline{}$	6.83 \pm 0.05 8.59 \times 10 ⁴ 1.23 \times 10 ⁴ 6.98 \pm 0.24 $8.25 + 0.05$ 3.69 \times 10 ⁴ 4.56 \times 10 ³ 8.10 + 0.30	1.32×10^4		House	1.67 0.8 0.02

^a Cell-free extracts were prepared as described (A. I. Scott and S-L. Lee, *J. Am. Chem. Soc.*, 1975, 97, 6906). Approximately 10 g fresh leaves/10 ml of 0.05 m tris-maleate buffer (pH 7.0) were used in expt 1 and 3. The 38.25 mCi mmol⁻¹. ^e At the end of each expt vinblastine sulphate (8–10 mg) was added, the extract was adjusted to pH 11 (NH₄OH) and extracted (CH₂Cl₂); (5) and (1) were separated by t.l.c., (1) was further purified by h.p.l.c. and crystallised to constant activity as its 0.5 MeOH: 0.5 Et₂O solvate. ¹ No adjustment was made for recovered precur

Guéritte⁷ has argued that they are equally compatible with the existence of a biogenetic grid in which the conjugated immonium salt **(ll),** derived from a Polonovski type reaction of **(8)** and the N-oxide **(lOa)** is in equilibrium with the 1,2 reduction product anhydrovinblastine **(5)** and the **1,4** reduction product **(12)** [path (b)]. Hydration of the enamine **(12)** could then give rise to **(1)** and **(3).** A feature common to both of the suggested pathways from *(5)* to **(1)** is the loss of one of the 21'-hydrogens of *(5)* by a process which could be mediated by the biological equivalent of Polonovski elimination of the corresponding N-oxide, a possibility advanced earlier.² If this were the case then loss of the $21' \alpha$ -H should be expected, as only this hydrogen can adopt an antiperiplanar orientation relative to the oxygen of **(6)** [or (5)] N-oxide (Scheme 2). To test the possible intervention of an N-oxide (albeit indirectly) it was required to prepare anhydrovinblastine stereospecifically labelled with **3H** in the 21'a-position.

Inspection of models of the coupling reaction product **(11)'** indicated that the steric congestion of the β -face of the dihydropyridinium ring might force hydride reduction to occur predominantly from the less hindered α -face. Gratifyingly, treatment of (11) with NaB[²H]₄ in methanol afforded monodeuterio-(5), the IH n.m.r. spectrum (360 **MHz)** of which showed absence of the $21'\alpha$ -H doublet at δ 3.52 and the collapse of the 21' β -H doublet at δ 3.27 *(J* 16 Hz) to a singlet. [21 'a-3H]Anhydrovinblastine *(5)* was prepared in a similar manner using $NaB[^3H]_4$.⁵

Administration of $[21'\alpha^{-3}H, \text{ methyl-}^{14}C](5)$ (R⁵ = ¹⁴CH₃),[†] to cell-free extracts of mature C. *roseus* leaves followed by

 \uparrow [methyl-¹⁴C](5) (R^5 = ¹⁴CH₃) was prepared by treatment of vindolic acid \hat{P}) with $[$ ¹⁴C]diazomethane, coupling¹ of the result-
ant $[$ *methyI*-¹⁴C](8) (R = ¹⁴CH₃) with (**10a**) and reduction of the product with NaBH₄.

isolation, afforded **(1)** with no significant change in **3H/14C** ratio (expts 1 and 2, Table 1), showing that the $21'\alpha$ -³H was retained in the transformation.

These results provide the first unambiguous demonstration of intact incorporation of anhydrovinblastine into **(1).** Retention of the tritium at $21' \alpha$ indicates that the transformation $(6) \rightarrow (12)$ or $(5) \rightarrow (11)$ by *trans*-elimination involving the corresponding N-oxide (Scheme 2) are unlikely steps in the pathway.[†] While this does not preclude the possibility that cis-elimination might be involved by a different mechanism of dehydrogenation, we suggest that the sequences $(5) \rightarrow (6)$ $(12) \rightarrow (1)$ [path (a)] and $(5) \rightarrow (11) \rightarrow (12) \rightarrow (1)$ [path (b)] mediated by the N-oxide route shown in Scheme 2 do not appear likely as the major pathways from **(5)** to **(1)** in vivo.

A number of possible pathways compatible with the above results still remain: (a) direct hydration of the $\Delta^{15/(20)}$ double bond of **(9,** (b) reduction of **(5)** to 20'-deoxyvinblastine **(7)** and hydroxylation with retention of configuration [path (c) in Scheme 11, and (c) reduction to 20[']-deoxyleurosidine **(6)** followed by hydroxylation with *inversion* of configuration.⁹

We thank the National Institutes of Health for support, the

Lilly Research Laboratories for a gift of alkaloid samples, and The Royal Society for a Commonwealth Bursary (to M. H.).

Received, 5th April *1982; Corn.* 386

References

- 1 N. Langlois, F. Guéritte, Y. Langlois, and P. Potier, J. Am. *Chem. SOC.,* 1976, **98,** 7017.
- 2 P. Mangeney, **R.** 2. Andriamialisoa, N. Langlois, *Y.* Langlois, and **P.** Potier, *J. Am. Chern. Soc.,* 1979, **101,** 2243.
- 3 P. E. Daddona and C. R. Hutchinson, *Tetrahedron Lett.,* 1978, 1681.
- **4 A, I.** Scott, F. Gueritte, and S-L. Lee, *J. Am. Chem. Soc.,* 1978, **100,** 6253.
- 5 R. L. Baxter, C. A. Dorschel, S-L. Lee, and **A.** I. Scott, *J. Chem. Soc., Chem. Commun.,* 1979, 257.
- *6* (a) K. L. Stuart, J. P. Kutney, T. Honda, and **B.** R. Worth, *Heterocycles,* 1978, **9,** ¹³⁹¹; (b) p. 1419.
- 7 F. Guéritte, N. V. Bac, Y. Langlois, and P. Potier, *J. Chem. SOC., Chem. Commun.,* 1980, 452.
- **8 A. I.** Scott, **S-L.** Lee, **M.** G. Culver, W. Wan, T. Hirata, F. Gueritte, R. L. Baxter, H. Nordlov, *C.* A. Dorschel, H. Mizukami, and N. E. Mackenzie, *Heterocycles,* 1981, **15,** 1257.
- 9 For a discussion on the stereochemistry of enzymatic hydroxylation see R. Bentley, 'Molecular Asymmetry in Biology,' 1970, Academic Press, New York, Vol. **11.**
- **10** For a discussion of primary hydrogen isotope effects see J. P. Klinman in 'Transition States of Biochemical Processes,' eds. R. D. Gandour and R. L. Schowen, Plenum Press, New York, 1978, ch. **4.**

^{\$} Complete loss of **3H** might be expected for such a mechanism only if loss of the $21^{\prime}\alpha$ -H were not a rate determining step. For the antithetical case an abnormal ³H isotope effect of $>25:1$ would be required to invalidate this result (ref. 10).