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Biosynthesis of the Antiturnour Catharanthus Alkaloids: The Fate of 
the 2l'a-Hydrogen of Anhydrovinblastine 
Robert L. Baxter,* Mashooda Hasan, Neil E. Mackenzie, and A. Ian Scott* 
Department of Chemistry,' University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ 

[21 'a-3H,rnethy/-14C]Anhydr~vinbla~tine is incorporated into vinblastine by cell-free preparations of 
Catharanthus roseus without loss of 3H. 

The chemotherapeutic importance of the bis-indole dinieric 
alkaloids, vinblastine (1) and vincristine (2), from C. roseiis 
has given impetus to both synthetic1p2 and biosyntheti~~-~ 
studies of these and the related alkaloids, leurosidine (3) and 
Ieurosine (4). Incorporation experiments with whole p1ants3v4 
and cell-free systemP have established the role of vindoline 
(8) and catharanthine (10) as precursors of the Aspidusperma 
and Iboga segments of the dimers, respectively. Anhydrovin- 

blastine (5), radiolabelled in either, but not both, of the 
Aspidosperma or Iboga derived segments, has been shown to be 
incorporated into (1) by cell-free  preparation^.^^^^ In addition, 
singly-labelled 20'-deoxyleurosidine (6) has been incorporated 
into (1) by intact C. roseus  plant^.^ 

While these results suggest a biosynthetic route (8) + (10) -+ 
(5) + (6) + (1) [path (a) in Scheme 1 ] similar to that previously 
proposed by Potier2 on the basis of synthetic analogy, 
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Table 1. Incorporation of anhydrovinblastine (5) into vinblastine (1) by cell-free extracts a of C. roseus. 

Exp t Precursor Anhydrovinblastine fed (d.p.m.) 3H/14C ratio (1) isolated (d.p.m.)e 3H/14C ratio % incorp.' 
r- A- -------7 

3H 14c 3H 14c 

1 [21:a-3H,merhyZ-14C](5)C 5.03 x lo6 7.37 x lo5 6.83 f 0.05 8.59 x lo4 1.23 x lo4 6.98 f 0.24 1.67 

- 1.32 x 104 - - 0.02 
2 [21 a-3H,rnethyl-14C](5)C 4.70 x lo6 5.70 x lo5 8.25 & 0.05 3.69 x lo4 4.56 x lo3 8.10 i 0.30 0.8 
3b [2 l'a-3H]d(5) 8.24 x 107 - 

a Cell-free extracts were prepared as described (A. I. Scott and S-L. Lee, J.  Am. Chem. Soc., 1975, 97, 6906). Approximately 10 g fresh 
leaves/lO ml of 0.05 M tris-maleate buffer (pH 7.0) were used in expts 1 and 3. The concentration of plant material was halved in expt 2. 
b Extract boiled for 5 min prior to feeding. C Specific activities 4.01 mCi mmol-I for 3H; 0.22 mCi mmol-1 for 14C. Specific activity 
38.25 mCi mmoI-I-. At the end of each expt vinblastine sulphate (8-10 mg) was added, the extract was adjusted to pH 11 (NH,OH) and 
extracted (CH2C12) ; (5) and (1) were separated by t.l.c., (1) was further purified by h.p.1.c. and crystallised to constant activity as its 
0.5 MeOH: 0.5 Et20 solvate. No adjustment was made for recovered precursor. 
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(1) RI- = OH, R2 = Et, R3 = H, R4 = R5 = Me 
(2) RI- = OH, R2 = Et, R3 = H, R4 = CHO, R5 = Me 
(3) RI- = Et, K2 = OH, R3 = H, R4 = R5 = Me 
(4) RI- = Et, R2, R3 = -0-, R4 = R5 = Me 

(6)  R1 = Et, R2 = H, R3 = H, R4 = R5 = Me 
(7) R1 = H, R2 = Et, R3 = H, R4 = R5 = Me 

(5) RI- = Et, a15'(20'), R4 = R5 = Me 

( 8 )  R = Me (1 0 )  
(9) R = H (10a) Nb- oxide of (10) 

Gukritte' has argued that they are equally compatible with the 
existence of a biogenetic grid in which the conjugated im- 
monium salt (ll), derived from a Polonovski type reaction of 
(8) and the N-oxide (lOa) is in equilibrium with the 1,2- 
reduction product anhydrovinblastine (5) and the 1,4- 
reduction product (12) [path (b)]. Hydration of the enamine 
(12) could then give rise to  (1) and (3). A feature common to  
both of the suggested pathways from (5) to  (1) is the loss of one 
of the 21'-hydrogens of (5) by a process which could be 
mediated by the biological equivalent of Polonovski elimina- 
tion of the corresponding N-oxide, a possibility advanced 
earlier.2 If this were the case then loss of the 21'a-H should be 
expected, as only this hydrogen can adopt an  antiperiplanar 
orientation relative to  the oxygen of (6) [or (5)] N-oxide 
(Scheme 2). To test the possible intervention of an  N-oxide 
(albeit indirectly) it was required t o  prepare anhydrovin- 
blastine stereospecifically labelled with 3H in the 21'a-position. 

H 

Scheme 1 

(12) 

Scheme 2 

Inspection of models of the coupling reaction product (11)' 
indicated that the steric congestion of the p-face of the di- 
hydropyridinium ring might force hydride reduction to  occur 
predominantly from the less hindered or-face. Gratifyingly, 
treatment of (11) with NaB[2H], in methanol afforded mono- 
deuterio-(5), the IH n.m.r. spectrum (360 MHz) of which 
showed absence of the 2l'a-H doublet at 6 3.52 and the col- 
lapse of the 21'p-H doublet at 6 3.27 (J  16 Hz) to  a singlet. 
[21 'a-3H]Anhydrovinblastine (5) was prepared in a similar 
manner using NaB [3H]4.5 

Administration of [2 1 'R-~H,  rnethyl-14C](5) (R5 == 14CH3),t 
to  cell-free extracts of mature C. roseus leaves followed by 

7 [rnethyl-14C](5) ( R  = 14CH3) was prepared by treatment of 
vindolic acid (9) with [14C]diazomethane, coupling' of the result- 
ant [methyZ-14C](8) (R = 14CH3) with (10a) and reduction of the 
product with NaBH,. 
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isolation, afforded (1) with no significant change in 3H/14C 
ratio (expts 1 and 2, Table l), showing that the 2 l ’ ~ - ~ H  was 
retained in the transformation. 

These results provide the first unambiguous demonstration 
of intact incorporation of anhydrovinblastine into (1). Reten- 
tion of the tritium at 21’a indicates that the transformation 
(6) -+ (12) or (5) -+ (11) by trans-elimination involving the 
corresponding N-oxide (Scheme 2) are unlikely steps in the 
pathway.$ While this does not preclude the possibility that 
cis-elimination might be involved by a different mechanism of 
dehydrogenation, we suggest that the sequences (5) -+ (6) -+ 
(12) -+ (1) [path (a)] and (5) + (11) + (12) -+ (1) [path 
(b)] mediated by the N-oxide route shown in Scheme 2 do not 
appear likely as the major pathways from (5) to (1) in vivo. 

A number of possible pathways compatible with the above 
results still remain: (a) direct hydration of the A15’(20’) double 
bond of (9, (b) reduction of (5) to 20’-deoxyvinblastine (7) and 
hydroxylation with retention of configuration [path (c) in 
Scheme 1 1, and (c) reduction to 20’-deoxyleurosidine (6) 
followed by hydroxylation with inversion of config~ration.~ 
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$ Complete loss of 3H might be expected for such a mechanism 
only if loss of the 21’~-H were not a rate determining step. For the 
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be required to invalidate this result (ref. 10). 
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